
随着交通银行的手机银行业务迅速发展,生产系统和管理系统产生的数据呈几何级数增长,传统的数仓分析方法和竖井式架构已无法满足业务需求。
随着数字社会建设步伐加快,新一轮的金融市场开放再次换挡加速,交通银行在金融行业率先进行测试验证工作,对基础架构进行改造,对业务系统和管理系统进行下沉。
数字业务运营成本逐步提高,亟需更优化的方法和工具,要求供应商提供稳定可靠的产品,同时具备给予客户进行业务和系统的规划能力,达成监管机构的目标要求。
交通银行搭建了1000+节点的FusionInsight+DWS大数据集群,重新规划“一湖一仓”的数据架构体系,通过实时引擎,实现海量数据实时更新,在国产化的趋势下,需要高性能、国产化的服务器来提供充足的国产化算力资源。

协助客户搭建了1000+节点的FusionInsight+DWS大数据集群,对现有多个数据平台进行整合重构,并借助产品的新版本能力,重新规划“一湖一仓”的数据架构体系,通过湖仓融合,实现数据同宗同源;通过实时引擎,实现海量数据实时更新。
交通银行数据仓库(DWS)采用PG国际鲲泰R722服务器作为数据底座,采用MPP(Massive Parallel Processing)架构,支持行存储与列存储,提供PB(Petabyte,2的50次方字节)级别数据量的处理能力。